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1. INTRODUCTION

In this note we examine a classical problem in the framework of the theory
of small random perturbations of dynamical systems: the first exit from a
suitable domain G.

In particular, for a class of Ito equations, we address the question of
the asymptotic exponentiality, in the limit of small noise, of the suitably
normalized first exit time from G. We are interested in the general case of
G containing many attractors of the unperturbed system. This problem is,
on one side, interesting in itself; it amounts to considerably strengthen the
classical Freidlin-Wentzell results on the asymptotics of the first exit time
from a domain G. It is, on the other side, also related to the so-called
metastable behavior of the particular stochastic dynamics described by our
Ito equations, in the framework of the pathwise approach to metastability
introduced in [CGOV].

From a probabilistic point of view the asymptotic exponentiality (or
asymptotic unpredictability) of the exit time is related to a particular exit
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The goal of this note is simply to call attention to the resulting simplification in
the proof of asymptotic exponentiality of exit times in the Freidlin-Wentzell
regime (as proved by F. Martinelli et al.) by using the coupling proposed by
T. Lindvall and C. Rogers.
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mechanism: the repetition of a large number of almost independent trials.
Among the various different ways the large deviation theory is able to
select a particularly efficient one. So the heuristic explanation of the
asymptotic exponentiality is based on a long sequence of recurrences inside
G together with a loss of memory and eventually a successful exit attempt.
In [GOV], very sophisticated analytical results due to Day (cf. [D]) were
used to extend to a "tunneling" problem the previous results relative to the
case of a domain G completely attracted by a unique asymptotically stable
point. In [MOS], for a general class of domains G, the analytical methods
of Day were replaced by probabilistic arguments based on contraction
properties of the stochastic map (depending on the noise) which associates
to the initial datum of our stochastic equation the solution at a given
time T. Again the ingredient of loss of memory, necessary for the
asymptotic exponentiality is based on delicate and highly non-trivial
arguments developed in [MS].

In the present note, in the general [MOS] context, we give another
proof of the asymptotic exponentiality by using a simple and beautiful
coupling argument due to Lindvall and Rogers (cf. [LR]). The goal is to
stress the resulting simplicity.

Coupling methods have been also successfully used to show
asymptotic exponentiality for an infinite dimensional case, as the stochasti-
cally perturbed non-linear heat equation, also considered in [MOS]. Using
a coupling introduced by Mueller in [M], Brassesco (cf. [B]) was able to
treat escape times which were not treatable with the techniques considered
in [MOS].

2. THE RESULT

Let Xt
x,e be the Markov process obtained as the unique solution of the

following Ito equation:

where ( W t ) is a standard d-dimensional Brownian motion, x e R d , e>0,
and the vector field b is assumed to be globally Lipschitz. Let us in fact,
and to simplify, assume b to be of class C1 with bounded gradient. In par-
ticular, as it is well known, this implies strong uniqueness of the solution
of (1), for any given Brownian motion ( W t ) , as well as the strong Markov
property for ( X t

x , e ) t . Of course, more general assumptions on the field h
can be taken, and an extension to varying diffusion coefficients is also
possible, cf. Remark 4.
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Notation. Though everything is done on any probability space
( Q , A , P ) where (Wt) is defined, through a pathwise (and continuous)
transformation, sometimes it is more convenient to relax the notation,
eliminating the superscript x on X x , e and using Px to denote the proba-
bility under the condition Xe

0 = x.
Our goal is to discuss the asymptotic behavior, as e -> 0, of the first

exit time T e=D E F i n f { t > 0 ; X s
t ,eG}, when Xe

0 = xeG, and where G is a
bounded domain verifying certain conditions. A possible set of assumptions
would be, similarly to [MS] and [MOS]:

(a1) G is a bounded domain in [Rd, with a smooth boundary dG,
taken as of class C2. If I 0 , T (p) denotes the rate functional

defined on the space C([0, T], (R d) and corresponding to the large devia-
tion principle associated to the family of laws of ( X x , e ) 0 < t < T on this space,
V(x, y) is the associated quasi potential of Freidlin and Wentzell:

and one considers the equivalence relation

then one assumes:

(a2) There are finitely many compact sets K1,...,Km, equivalence
classes for ~, and such that:

(i) each w-limit set of the deterministic system given by x(t) =
b(x(t}) is contained in some Ki.

(ii) The stable classes are K1,..., Ke (l < m) and each of them consists
of a fixed point of the deterministic system. These are denoted by xi,
i= 1,..., l and we assume that {x1 , . . . , xe} n9G = 0. Here the notion of a
"stable" class is that coming from Freidlin and Wentzell theory:

Definition 1. An equivalence class K is said to be stable if
V(x, y) > 0 for all x e K, all y e K.

We know that V(x, y) is constant for all x e K i , all yeKj.
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Let Vi,j denote this constant, so that Ki is stable iff

Let 1<k<l be such that { x 1 , . . . , x e } n G = { x 1 , . . . , x k } and let S>0
such that Bs(Xi) is the closed euclidean ball with center xi and radius o, is
contained in the basin of attraction of xi as well as in G, for i= 1,..., k.
Moreover, let us assume that a is such that all positive orbits of the deter-
ministic system starting in B (x i ) do not leave G. Let

k

We assume further

(a3) Among x1,..., xk at least one of them is a hyperbolic fixed point,
i.e., there exists i0e {1,..., k] such all the eigenvalues of the Jacobian matrix
( d b r / d x s ) r , s | x = x i 0 have negative real part.

The last assumption concerns the "cycle" property:

(a4) Let V = max i , j<k Vi,j and VG = min 1 < i < k min y e d G V(x i , y). We
assume that VG > V.

We may now state

Theorem 1. Under above assumptions, and if we define Be through
the relation

then:

Remark 1. If G is confining, i.e., ( b ( x ) , n ( x ) } <0 for each xedG,
where n(x) indicates the outward unit normal vector to dG, at the point x,
then we may take any xeG in (i) and (ii) of Theorem 1. (G is open)

Remark 2. Contrarily to what happens in the case of a domain
contained in the basin of attraction of a single fixed point or a periodic
orbit, we do not always have asymptotic equivalence (even logarithmically)
between a quantile of the distribution of ie under Px (xeD) and Ext

E. For
a counterexample see, e.g., [FW], p. 197.
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Nevertheless, if Be is defined through Eq. (5), as observed in [MOS],
the bound

for some finite constant C, holds independently of (i) of Theorem 1.
Moreover, from Eq. (6) and the known results of Freidlin and

Wentzell on the asymptotic behaviour of e2 logE x T e , we get

On the other side, and this is the reason for the name "cycle," if x e D i

one has for any h > 0

using the notation Te(A) to denote the first hitting time of the set A.
For convenience of the reader let us recall the verification of Eq. (6),

as in [MOS]:

where ge(t)=
DEF s u p x e G P x ( r e > tB e) . But the Markov property implies

that

so that

As in [MOS] we can see that ge(2) <r< 1 for e small, and so we get (6).
In fact,
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the second term on the r.h.s. of Eq. (9) is e-1, and using Freidlin and
Wentzell estimates we see that the first term goes to zero, so that we get
the claimed upper bound.

Remark 3. The argument just described allows also to make use of
the Dominated Convergence Theorem and, from Eq. (8), to get (ii) of
Theorem 1, once part (i) is proved.

Moreover, and as in [GOV], for the proof of part (i) in Theorem 1
in the case x = xi0, it suffices to prove the following:

Lemma 1. Under the assumptions of Theorem 1, with B e>0 given
by Eq. (5) and letting

for t > 0, e > 0, then there exist positive numbers SE which tend to zero as
e -> 0, and such that for each s, t > 0:

where ot( 1) is a function of t and e, which tends to zero as e —> 0, uniformly
on t > t 0 , for any given t0>0.

The Proof of Lemma 1, as presented below, is similar to that of
Lemma 4 in [GOV] with assumption (a4) and the Freidlin and Wentzell
theory being used to control the time needed to arrive to a suitably small
neighborhood of xi0, and using the coupling method proposed by Lindvall
and Rogers (cf. [LR], Sections 2 and 3) to ensure the loss of memory.

For this, let B denote the Jacobian matrix of b at xi0. It is well known
that, under assumption (a3) there exists a unique symmetric positive
definite matrix L such that

(We are using T for transposition, and D to denote the identity dxd
matrix.)

Define next the norm p in Rd, by

Recall that b ( . ) is assumed of class C1, which implies, using ( 1 1 ) and
standard facts, that,
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if x, x' e B d 1 (X i 0 ) , for 0 < S1 <S small enough, and where A(x, x') is a dx d
matrix with entries d s b r ( y r , s ) for suitable yr,s with \y r , s — x i0|<Cd1, C
being a positive constant (depending only on the dimension).

The coupling proposed in [LR] may thus be used to replace the
analytical results of [Day] used in [GOV], or the exponential joining
proposed by [MS], and used in [MOS], and allows us to write the
following

Lemma 2. There exists s0 > 0 so that if x e Bs0 ( x i 0 ) then

uniformly on t > t 0 , for any given t0>0.

Proof. Let a>0 be chosen so that (13) holds and let us now choose
C0e(0, C1) so that all positive orbits of the deterministic system issued
from some point in B(xio) converge to xi0 without leaving Ba1(xi0). For the
proof of (14) it suffices to present a coupling of the two processes Xt

x,e and
Xt

xi0.e in such a way that with probability tending to one they will meet
before leaving B2s1(xt0), and this in time of order shorter than Be.

In order to do so, we consider the coupling proposed by Lindvall and
Rogers (Sections 2 and 3 of [LR]), which is particularly simple in the case
of constant diffusion coefficient (Example 5 of [LR]) . The processes Xt

x,e

and Xt
x,0,e are constructed using the same noise, as follows: take Xt

x,e and
Xt

x,i0,e as solutions of the Ito equations

where Wt is a standard d-dimensional Brownian motion and H(x, y) is the
dxd orthogonal matrix with determinant —1 given by

The geometric idea behind this construction is clear: Consider
x + y e Rd. From (16), we have
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and, acting on vectors that belong to the plane orthogonal to x — y,
H(x, y) is just the identity. Thus, H(x, y) is simply the specular reflexion
through the plane (by the origin) orthogonal to the vector x — y, and has
determinant -1. Then, given z e Rd, z = x + b, consider z' = H(x, y)b + y.
Then, z' is the reflexion of z by the plane orthogonal to x — y, that passes
by the middle point between x and y. In particular, if Z, is a d-dimensional
Brownian motion starting at x, then Z't as obtained by the above described
reflexion (for each point in the path), is a (d-dimensional Brownian motion
starting at y.

Then, the processes Xt
x,e and Xt

xi0,e are both solutions of our original
Ito equation, and if one considers the function g:R 2 d ->R, g ( x , y ) =
p(x — y) (for p defined in (12)), then, Ito's formula (which is valid as long
as g(x — y)>0), yields for the one-dimensional process Yt

e, given by

The process A* above is that coming from the second derivative of g, D2g
in Ito's formula, and it is given by

Since As
t results to be zero in our case, it follows from (13) that the

drift part in (18) is less or equal than zero, as long as Xt
x,e and Xt

xi0,e

remain in ^(x^). From (16), the martingale term on the r.h.s. of Eq. (18) is
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which implies that the process Yt
e satisfies

for Bt a standard one dimensional Brownian motion. Next, let Se be the
coupling time, T e ( y ) the exit time from B2s1(xi0) of the solution Xy,e

t and
Se the time it takes for Ye

0 + 2e \t
0 ( p ( X s

x , e - X s
x i 0 , e ) / \ X s

x , e - Xs
xi0,e|) dBs to

hit zero:

Now, from (13) and the above remarks,

where we denoted by t A s the minimum between t and s. But, from the
Freidlin and Wentzell theory we know that there exists a, c>0 so that

For the other term, we have that the continuous martingale Me
t =

2e^ t
0(p(X s

x , e-X s
x i 0 , e)/ \X s

x , e-X s
x i 0 , e \)dB s has compensator < M e > t =

4e2 1t
0 (p 2 (X s

x , e - Xs
xi0,e)/\Xs

x,e- Xs
xi0,e|2) d s > e 2 k 1 t for some constant k1, by

the equivalence of the norms in Rd. Thus we may use a classical result on
time-change for martingales (see [KS], p. 174) which allows us to write
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Me
t = B<Me>t, where B is a standard one dimensional Brownian motion

(Bt = ME
c 2 t where the process Cs

t is the inverse of the compensator,
cf. Theorem 4.6, Ch. 3 in [KS]). Thus

where k2 is a positive constant so that p ( v ) < k 2 \v\, for all veR d . From
(19), (20) and (21), it follows that P ( S e < e - 3 ) ^ 1 as e->0, which implies
Lemma 2 from ( 7 a ) .

Proof of Lemma 1. As in [GOV], the point is to show the exis-
tence of ne > 0 such that ne/Be -> 0 and such that

To verify (22) let us take

and let ne = ea/e2.
Since a > 0, G\D is bounded, and all stable classes in G u dG are con-

tained in D, from Freidlin and Wentzell theory we know that

On the other side, by assumption (a4) and since V<a. Freidlin and
Wentzell theory implies that

Thus we get:

which both tend to zero, yielding Eq. (22).
To complete the proof of Lemma 1, we proceed as in [GOV]: Let

s > 0 and
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then

which tends to zero as e -> 0.
Due to Eq. (6) (cf. Remark 2) and the choice of a, ne/Be->0, and we

have that uniformly on (s, t) e [0, + i) x [t0, +i) for any given t0>0:

But, as in Eq. (2.16) of [GOV]:

and

so that Lemma 1 follows easily from Eqs. (23)-(25), and Lemma 2.

Proof of Theorem 1. As already noticed it suffices us to prove
part (i).

Also if x = xi0, (i) follows at once from Lemma 1. Using Lemma 2 we
extend to any xe BS0(xi0). To conclude we need to recall, as in Eq. (7b)
that if V< a < VG and ne = ea/e2 then

Using the strong Markov property at x e (B S 0 ( x i 0 ) ) we then conclude the
proof as before.

Remark 4. The assumption of constant diffusion coefficient and
b(.) satisfying Eq. (13) makes the coupling time of the two processes
X x , e , Xxi0,e—if we use the coupling designed in [LR]—particularly easy to
evaluate, and directly comparable with S where S is the time for a one
dimensional Brownian motion starting at some point r = \x — y\/2e to
reach the origin.



On the other hand if a( .) is not constant, one needs to examine condi-
tion (23) of [LR] to verify if coupling occurs. Since we not only want to
see the finiteness of the coupling time, but also its e-dependence, we need
to make a further comparison, and we do not enter this.

Remark 5. Calculations become simpler in the particular case
satisfying condition (b(x) — b(x'), x — x'y <0 for x,x' in some neigh-
borhood of the fixed point xi0. This would be the case, e.g., in the situation
of b = — Va and xi0 being a hyperbolic local minimum. Without assuming
hyperbolicity it will also work if the potential a is convex in a
neighborhood of its local minimum xi0. Then, of course we may work with
L as the identity and the martingale Me becomes a Brownian motion. (This
example covers the cases treated in [GOV]. Cf. also Example 5 in [LR].)
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